AI技術を活用した地盤強度予測システムの開発 人工ニューラルネットワーク(ANN)を用いた機械学習モデルにより地盤強度の予測精度が20%向上
集計したデータは、10箇所の支持層深度を予測する人工ニューラルネットワーク(ANN)に学習させ、実際の現場測定値と照らし合わせることで予測精度を評価しました。さらに、上記手法にバギング法を適用することで、予測精度が従来よりも20%向上しました。
この予測値を基に、世田谷区内の4カ所を中心に半径1km以内の支持層の分布を示す3次元マップを作成。このマップは、地盤の安定した土地を特定するための視覚的補助として機能し、液状化のリスクが高い地域をピンポイントで特定できるため、より適切なリスク評価が可能となります。
図2. 支持層の深度分布を示す3次元マップの作成例
■今後の展望
本研究のように、高精度の予測手法を確立することは、地盤工学における機械学習の大きな可能性を示すものといえます。このような予測モデルの改善を続け、先進的なAIモデルを地盤解析に組み込むことで、安全かつ効率的なインフラ計画が促進され、災害レジリエンスの高いスマートシティの実現が可能となります。今後は、地下水の影響を考慮して地盤条件を追加するほか、沿岸部と非沿岸部に特化したモデルを開発したりするなど、更なる精度向上を目指します。